Differential Pulse Voltammetric Determination of Trace Os(IV) at a Sol-Gel-Ceramic-Carbon Powder-9-phenyl-3-fluorone Composite Electrode in Flow Systems

2002 ◽  
Vol 14 (6) ◽  
pp. 420-426 ◽  
Author(s):  
Soo Beng Khoo ◽  
Ruidong Ye
2018 ◽  
Vol 14 (3) ◽  
pp. 271-276 ◽  
Author(s):  
Isaac Yves Lopes de Macedo ◽  
Morgana Fernandes Alecrim ◽  
Luane Ferreira Garcia ◽  
Aparecido Ribeiro de Souza ◽  
Wallans Torres Pio dos Santos ◽  
...  

1986 ◽  
Vol 51 (11) ◽  
pp. 2466-2472 ◽  
Author(s):  
Jiří Barek ◽  
Antonín Berka ◽  
Ludmila Dempírová ◽  
Jiří Zima

Conditions were found for the determination of 6-mercaptopurine (I) and 6-thioguanine (II) by TAST polarography, differential pulse polarography and fast-scan differential pulse voltammetry at a hanging mercury drop electrode. The detection limits were 10-6, 8 . 10-8, and 6 . 10-8 mol l-1, respectively. A further lowering of the detection limit to 2 . 10-8 mol l-1 was attained by preliminary accumulation of the determined substances at the surface of a hanging mercury drop.


1991 ◽  
Vol 56 (3) ◽  
pp. 595-601 ◽  
Author(s):  
Jiří Barek ◽  
Gulamustafa Malik ◽  
Jiří Zima

Optimum conditions were found for the determination of 4-nitrobiphenyl by fast scan differential pulse voltammetry at a hanging mercury drop electrode in the concentration range 1 . 10-5 to 2 . 10-7 mol l-1. A further increase in sensitivity was attained by adsorptive accumulation of this substance on the surface of the working electrode, permitting determination in the concentration range (2 – 10) . 10-8 mol l-1 with one minute accumulation of the substance in unstirred solution or (2 – 10) . 10-9 mol l-1 with three-minute accumulation in stirred solution. Linear scan voltammetry can be used to determine 4-nitrobiphenyl in the concentration range (2 – 10) . 10-9 mol l-1 with five-minute accumulation in stirred solution, with the advantage of a smoother baseline and smaller interference from substances that yield only tensametric peaks.


1997 ◽  
Vol 9 (12) ◽  
pp. 952-955 ◽  
Author(s):  
Agustina Guiberteau Cabanillas ◽  
Teresa Galeano Díaz ◽  
Francisco Salinas ◽  
Juan Manuel Ortiz ◽  
Jean Michel Kauffmann

Sign in / Sign up

Export Citation Format

Share Document